核聚变重大突破,行业内解读来了!

2022-12-15 09:14  来源:核能号    激光核聚变  净能量增益  核聚变

北京时间12月13日,美国能源部官员宣布,由美国政府资助的加州劳伦斯利弗莫尔国家实验室,首次成功在核聚变反应中实现“净能量增益”。实验向目标输入了2.05兆焦耳的能量,产生了3.15兆焦耳的聚变能量输出,能量增益达到153%。3.15兆焦耳的能量相当于二两炸药的爆炸威力。


北京时间12月13日,美国能源部官员宣布,由美国政府资助的加州劳伦斯利弗莫尔国家实验室,首次成功在核聚变反应中实现“净能量增益”。实验向目标输入了2.05兆焦耳的能量,产生了3.15兆焦耳的聚变能量输出,能量增益达到153%。3.15兆焦耳的能量相当于二两炸药的爆炸威力。

核聚变反应是宇宙中的普遍现象,它是恒星(例如太阳)的能量来源。核聚变能也是全世界能源发展的前沿方向,被视为未来社会的“终极能源”。如果人类可以掌控这种能量,就能摆脱目前地球的能源与环境危机困扰。到目前为止,人类对受控核聚变的研究主要分为两类,一是磁约束核聚变,另一类就是此次成功点火的激光核聚变。

“这是世界上首次激光核聚变点火。”中国科学院上海光学精密机械研究所研究员、高功率激光物理国家实验室主任朱健强表示。鉴于此次成功点火的里程碑式的意义。

本文特别分享朱健强对点火相关问题的解读,以飨读者。视频、图片皆来自网络,内容来源澎湃新闻。

关于激光核聚变。激光核聚变的发展是一个非常曲折的过程。上世纪60年代,激光一诞生,科学家就开展了激光核聚变的研究。所以NIF成功点火不是一天就取得的,而是将近60年的努力,是好几代人的不懈追求。

激光核聚变本身是一个科学目标,同时又是一个科学和工程相结合的大项目,是与人类关系最为密切的一个项目,也代表一个国家的实力。美国科学家不懈努力,在近期获得了一个重要的进展,对同行来讲,是非常令人鼓舞的事。

从去年8月开始,NIF就有了达到临界点火状态的苗头,我们内部也在判断,认为它在短时间内实现点火的可能性还是很大的。原来NIF的科学目标是实现10倍能量增益,现在做到1倍以上,得失相当,我觉得这就是一个里程碑式的工作,1倍以上就代表点火了。所以从这个角度看,美国基本上已经实现了点火的预期目标,后面它肯定会冲刺更高增益的点火,同时也会在全球掀起一个研究高潮。

这么大的成功是建立在以前多次失败的基础上。纵观六十年的研究历史,对激光核聚变的研究尽管没有取得预期目标,但依然没有下马,也说明了激光核聚变的重要价值,今天聚变点火的成功,可以预期今后激光聚变研究将进入一个新时代。

关于能量增益。能量增益就是输入进去多少能量,聚变反应后能输出多少能量,也就是产出和输入的能量比。能量增益为1就意味着打进去多少能量,聚变反应后出来多少能量。净能量增益就是输出的能量超过了输入的能量。

关于激光核聚变点火问题。激光核聚变点火问题是非常复杂的,因为激光聚焦光斑及实验用靶的状态,每次都是不一样的。激光的靶丸不到1毫米,在这么高能量、高密度的状态下,激光核聚变在建立的过程中有很多随机性,是不可确定的。所以每一次的实验可能都会有涨落,有了第一次成功的经验,奠定了将来的高追求成功率的基础。

美国原来在做点火工程的过程中,NIF的设计目标是输出的能量要比目前常规运行的高,设计的大概是2.4兆焦耳,但实际运行只有1.4兆焦耳,主要是后来的一些损伤导致激光器不能正常运行,所以没有很好实现点火预期。

这就造成了一个误区,以为美国点不了火,实际上它的体系是强大的。美国有一种理论叫营地战术,一个问题一个问题地解决。营地战术的核心是顶尖科学家能指出营地在哪里,才能逐步推进解决问题。所以NIF成功点火非常不容易,最顶尖的专家能在不确定的情况下构建出理论构架、模拟仿真,制定出实验方案,逐步逼近点火。

NIF建完以后,美国用了10多年时间不断冲击点火目标,过程是一波三折。去年8月8日,他们做到能量增益0.7左右。只要激光的能量输出、制靶、诊断配合好,还是会得到一个很好的结果。但非常遗憾,去年9、10月份想冲刺更高的增益,结果没有再现去年8月份的实验结果。这实际上是考验科学家意志和能力的时候了,总是没有达到目标肯定会受到质疑。虽然当时重复实验没有成功,但里面的问题更加清晰,在以后的实验中就可以规避,今年9月份又成功再现了一次去年的结果,12月5日再次冲刺得到3.15兆焦耳的能量输出,3.15兆焦耳的能量相当于二两炸药的爆炸威力。这是非常了不起的一个里程碑式的工作。美国能源部正式公布这个消息,向全世界正式宣布点火成功。

关于点火方式。点火方式目前来讲公认的有三种物理模型,一是NIF做的中心点火,这种方式不光可以用来点火,对国防安全、战略安全是有很大用处。二是直接驱动,未来的能源,我认为直接驱动的可能性是最大的。直接驱动的好处是皮实、简单,激光直接辐照,不需要能量间接转移,直接驱动是未来必然的探索。三是快点火,点火需要高温、高密度,快点火把两个状态解耦,先产生高密度,再加温。这是一种新型的点火方式,这个方式会得到非常高的效率,中国科学院早在2020年就支持我们开展做这方面的攻关。

关于未来方向。目前来讲有两条路。一是往更高的增益上走,当然这有很大难度,实际上美国的激光器能力已经到极限,原先设计的输出能量是2.4兆焦耳,现在也无法在2.4兆焦耳下运行,当初能量没打上去就是因为激光器的终端损伤严重,这次冲刺以后可能要再扩建更大能量的激光装置。二是寻求更加皮实、简单的点火方式。科学目标已经实现了,接下来怎么在悬崖上走得更加稳健、皮实,就需要往实用方面继续开展研究。

NIF的点火工作已经开启了一扇新的大门,原来是探索门怎么开,现在门开了,里面是另外一番风景,未来一定会有更丰富的物理,会有更挑战性的问题提出并共同冲刺,这是非常了不起的。

关于机遇与挑战。机遇就是美国点火成功了,对未来的发展增强信心,我们国家也会有更大的投入。

快点火也好,直接驱动点火也好,遇到的问题很多。美国号称间接驱动是最皮实的方式,都费了这么大的力气才实现。劳伦斯利弗莫尔国家实验室是非常有影响力的武器实验室,几百号人专门从事这方面的研究,实力不可小觑。

这也给我们一个启示,要不断通过实验加深理解,然后修正模型,逐步逼近一个真实的状态。这个工作不像以前做理论研究有固定公式,而是要构建理论体系,理论体系中还存在各种各样的微扰,要把微扰量搞清楚,才会逼近真实。这是一个多维一体的科学工程,是非常复杂的大体系。

回过头来看,中国为什么也在持续不断研究激光核聚变?上海光机所建所的一个目标就是激光核聚变,我们这支队伍将近60年一直没有改变初衷,在国家的支持下,持续开展激光聚变研究。

关于商业应用。就像造飞机,一开始是概念,真正的商业都是要经过漫长的过程。光通讯也好,飞机也好,人造卫星也好,原子弹也好,构型是一个想象,真正做到应用,一定要有各种边界条件。

首先,效率要高。一来涉及重复率,因为聚变能量是要有重复率的。打一发激光产生聚变,有能量产出了,下一发再过很长时间也不行。现在三四个小时打一次激光,肯定做不了电站,做电站至少一秒钟打10次激光。激光要持续产生,这一类激光器就会发生很大的变化,现在的激光器是不能做这个事的。二来涉及转换效率,现在做到输出能量和输入能量相当,做电站至少要输出能量是输入的百倍以上。这也是两个挑战,所以现在只是开了一扇门,这扇门开得非常精彩,门内更是精彩纷呈。

第二是要寻找更简单、更高效的聚变方式。现在只是实现了点火,下一步可能要寻求最优的、最简单的、性价比最高的方式去做商业。

瞄着这条路,未来会有很多的研究机构、大学,甚至公司投入更多精力发展。不仅仅是对科学目标,应该看到,作为激光聚变研究的大科学工程对国民经济的推动作用也是巨大的。NIF每年派生出的技术产值效益号称已经大大超过了美国对它的投入。尽管是大投入,但回报是非常大的,这也是美国持续支持这个领域发展的缘由之一。

中国激光核聚变研究在国际上是有影响力的。我们在国际竞争中崭露头角,在未来的能源建设过程中,这也是巨大的市场。全世界没有几个国家能够设计和建造激光核聚变装置,我国在该领域具备了体系性的核心竞争力,将来面对的是一个很宽阔的国际舞台,也是展示中国能力的一个非常重要的显示度。



图为技术

深圳核博会

中国核电网


阅读推荐

正在加载

阅读排行